Mahmoud Al-Talib*a, Hasan Tashtoush ${ }^{\text {a }}$, Areej Al-Ghoul ${ }^{\text {a }}$, Burkhard Ziemer ${ }^{\text {b }}$ and Ulrich Koert ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Department, Yarmouk University, 21163-irbid, Jordan
${ }^{\mathrm{b}}$ Chemistry Department, Humboldt University, D-10099-Berlin, Germany
Received June 1, 2004
Phenylmalonic acid dihydrazide reacted with 2,4-pentanedione to give, unexpectedly, 5,7-dimethyl-1,3-dioxo-2-phenyl-2,3-dihydro-1H-pyrazolo[1,2-a]pyrazole-4-ylium 5. The structure of the product is confirmed by X-ray crystallography .
J. Heterocyclic Chem., 42, 287 (2005).

Pyrazoles have attracted much attention in recent years due to their biological and pharmaceutical activities [1-4]. During the course of our work directed at synthesizing substituted bis-pyrazoles, we observed an unusual behavior in the reaction of malonic acid dihydrazide with 1,3diketones. Accordingly, we undertook an investigation to identify the products of this reaction.

The reaction of acid dihydrazide $\mathbf{1}(\mathrm{n}=0,2,3,4)$ with 2,4-pentanedione $\mathbf{2}$, gave smoothly the desired bis-pyrazoles 3 (Scheme 1) [5].

Scheme 2

Scheme 1

In contrast the reaction of malonic acid dihydrazide 1 ($\mathrm{n}=1$) with 2,4-pentanedione 2, took a different route. Thus at room temperature, a red solution was obtained. Work-up of the reaction mixture gave a red gummy product which was difficult to solidify. To overcome this, 2-phenylmalonic acid dihydrazide 4 was used. Thus, reaction of $\mathbf{4}$ with 2,4-pentandione 2 in absolute ethanol at room temperature afforded after the usual work-up orange crystals of pyrazolo[1,2-a]pyrazol-4-ium-3-olate 5 (Scheme 2). In the NMR spectrum of 5 the peaks at $\delta 8.05$ and 7.25 are assigned for the aromatic protons, whereas the singlet at $\delta 6.12$ is assigned to H-6 proton. The methyl protons resonate at $\delta 2.50$. Furthermore the structure of $\mathbf{5}$ was unambiguously assigned by X-ray crystallography (Figure 1). It is worth noting that compound $\mathbf{5}$ was previously prepared via different route [6,7].

Some characteristic structural features of $\mathbf{5}$ are given below. The compound shows equal C-O bond lengths. The positive charge of the cation is mainly delocalized over the pyrazolium ring N2-C3-C4-N6; this is obvious by the equal bond lengths (N2-C3, N6-C5) and (C3-C4, C4-C5). The negative charge is delocalized mainly over the CO-CCO part of the other ring.

Figure 1. ORTEP diagram of molecule 5.
It is clear that the reaction proceeds via a different mechanism from that reported previously [5] which involves the condensation of dihydrazide with one equivalent of the diketone accompanied by the elimination of a hydrazine molecule.

A plausible mechanism for the formation of $\mathbf{5}$ is given in Scheme 3.

In order to check the generality of the reaction, acid dihydrazide $\mathbf{4}$ was treated with 2-acetylcyclohexanone $\mathbf{6}$ in

Scheme 3

the same way to give the hexahydropyrazolo[1,2-a]inda-zol-4-ium-3-olate 7 (Scheme 4). The structure of 7 was confirmed by NMR spectroscopy by comparison with 5 . Thus, the aromatic protons resonate at $\delta 8.05,7.31$ and 7.08. The methyl protons resonate as a singlet at $\delta 2.52$. The methylene protons appeared at $\delta 3.01,2.38$ and 1.98.

Scheme 4

EXPERIMENTAL

Melting points were determined on an electro thermal-digital melting point apparatus and are uncorrected. The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra were recorded on Brucker AC-250 spectrometer and reported in δ values in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ with tetramethylsilane (TMS) as the internal standard. The ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Brucker AC-250 spectrometer. Infrared spectra were recorded on Perkin Elmer FT-IR SP-2000 spectrometer as potassium bromide (KBr) pellets. Elemental analyses were determined at M.H.W. Laboratories., Phoenix, Az. USA. Chemicals were purchased from Aldrich and Fluka and were used without further purification.

X-ray data were collected at 293 K on a syntax P3-diffractmeter with a graphite monochromator, $\lambda(\mathrm{Mo}-\kappa \alpha)=0.71073 \mathrm{~A}$. The structure was solved by direct methods. The refinement converged at $\mathrm{R} 1=0.0354$ and $\mathrm{R} 2=0.0459$.
5,7-Dimethyl-1,3-dioxo-2-phenyl-2,3-dihydro-1H-pyrazolo[1,2-a]pyrazole-4-lium (5).

To a stirred solution of 2-phenyl malonic acid dihydrazide 4, ($3.12 \mathrm{~g}, 15 \mathrm{mmol}$) in absolute ethanol (35 ml), 1,3-diketones $\mathbf{2}$
or $\mathbf{6}(15 \mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature for 2 hrs. The reaction mixture was left standing at room temperature for about 12 hrs . The formed red crystalline product was collected by filtration, washed with hexane and dried to give 5: $3.42 \mathrm{~g}(90 \%) \mathrm{mp} 212-213^{\circ}$; ir (KBr): 1675 , $1590 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic); $7.25(\mathrm{~m}, 3 \mathrm{H}$, aromatic); 6.12(s, $1 \mathrm{H}, \mathrm{H}-6) ; 2.50\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 159.3,143.1,132.2,128.1,124.2,111.7$, and 11.1.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 69.80; H 5.03; N 11.66. Found: C, 69.69; H, 5.07; N, 11.77.
Crystal Data of 5 .
Crystallographic data is deposited with the Cambridge Crystallographic Data Center, CCDC 232795; $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, MW $=240.26$. Crystal system: monoclinic, space group P $21 \backslash \mathrm{c}$ with cell parameters: $\mathrm{a}=70421(1) \mathrm{A}, \mathrm{b}=11.564$ (2) $\mathrm{A}, \mathrm{c}=$ 13.992 (4) $\mathrm{A}, \mathrm{v}=1196.3 \mathrm{~A}^{3}, \mathrm{~d}=1.333 \mathrm{mg} \mathrm{m}^{-3}, \alpha=90 \mathrm{deg}, \beta=$ 94.63 (3) deg, $\gamma=90 \mathrm{deg}$.

9-Methyl-1,3-dioxo-2-phenyl-2,3,5,6,7,8-hexahydro-1 H -pyra-zole[1,2-a]indazol-10-ylium (7).

Compound 4 ($3.12 \mathrm{~g}, 15 \mathrm{mmol}$) reacted with compound 6 $(2.10 \mathrm{~g}, 15 \mathrm{mmol})$ as described above to give $73.86 \mathrm{~g}(87 \%) ; \mathrm{mp}$ 193-194 ${ }^{\circ}$; ir (KBr): $1690,1580 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta: 8.05(\mathrm{~d}$, $\mathrm{J}=4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic); 7.31(t, $\mathrm{J}=3 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic); 7.08(t, $\mathrm{J}=$ $4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); 3.01(t, J $\left.=3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $2.38\left(\mathrm{t}, \mathrm{J}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.98\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 159.9,159.3,143.0,140.4,132.6,128.0,124.0,123.9,121.2$, 21.6, 21.5, 20.9, 19.1, 9.5.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$): C, 72.84; H, 5.75; N, 9.99. Found: C, 72.64; H, 5.70; N, 10.13.

Acknowledgments.
Thanks are due to Deanship of Scientific Research and Graduate Studies at Yarmouk University for financial support (project No. 5/2001). Special thanks are due to prof. J. C. Jochims, Konstant University - Germany for helpful discussions.

REFERENCES AND NOTES

* Corresponding author; e-mail: Mahmoud_talib @ yahoo.com; tel: 00962-2-7211111; fax: 00962-2-7211117.
[1] L. G. Thomas, Heterocyclic Chemistry, Longman, New York, 1992, p 283.
[2] A. J. Boulton, In Advances in Heterocyclic Chemistry, Vol 6, Kartizky, A. R., Ed. New York 1966, pp 361-405.
[3] H.S. Kim, S. T. Kwag and K. O. Choi, J. Heterocyclic Chem., 37, 103 (2000).
[4] H.A. Chung, Y. Kang, D. H. Kweon, W. S. Lee and Y. Yoon, J. Heterocyclic Chem., 37, 1443 (2000).
[5] Al-Goul, A. MSc. Thesis, Yarmouk University, 2003.
[6] T. Kappe and C. Kos, Synthesis, 629 (1989).
[7] W. Z. Friedrichsen, Naturforsch, Teil B, 35, 1002 (1980).

